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Mechanical systems with friction constraints are usually reduced to 
systems with Ideal constraints by supplementing the given forces by 

frictional forces and by adding certain relations obtained from empirical 
laws of friction. These laws can have various forms, depending on the 

nature of the constraints within the system, but they always have certain 
features in common. A general theory of motion of systems with friction 

was developed by Palnlevb-[ 1 1 , 

A direct application of Lagrange’s method makes it possible to 

establish a general principle, even for systems with friction, that does 
not involve explicitly the constraint reactions. This so-called Euler- 

Lagrange principle was established by Appell [ 2 1 for displacements 

admissible by frictionless constraints which are orthogonal to the re- 
actions of surfaces with friction. Chetaev [3 I formulated this princi- 
ple for admissible displacements that are orthogonal to the actual velo- 

cities of the points of the system. 

Of special interest is the problem on the extension of another basic 
principle of mechanics, the principle of least constraint of Gauss, to 
systems with friction. The work [ 4 1 of Pozharitskii is devoted to this 
problem, By considering a system in which certain points are constrained 
to slide with Coulomb friction along given surfaces, and by assuming the 
knowledge of the normal components of the reactions of the latter, 
Posharitskii proved that for the actual motion of such a system it Is 

sufficient that a certain expression involving the forces of friction 
has to attain a minimum with respect to accelerations. It should be 
noted that the problems in which the normal reactions do not depend on 
friction must be considered as the more restricted ones and as the more 

simple ones [ 2 1 ; in the more general cases, the normal reactions de- 
pend on the coefficient of sliding friction. Besides that, the experf- 
mental laws of friction can differ from Coulomb’s law. There exist also 
large classes of systems with non-ideal constraints which fall into the 
general definition of systems with friction according to Pafnlev&.[ 1 1‘ 
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It sssms that the question on the extension of the principle of Gauss to 

general systems with friction has not yet been considered, even though 
the solution of this problem is of certain interest, 

In this paper it is assumed that Painle&‘s definition of systems with 
friction is applicable under any experimental ‘laws of friction. An ex- 
tension of Painlev&s results to nonholonomic systems is given. Further- 

more, Gauss’s principle is established for such syatams in two forms: 
with explicit inclusion of the friction forces, and, what is more 
interesting, without the expliolt involvement of the forces of friction. 
The equations of motion of the system with friction are derived from 
Gauss’s principle. 

1. Let us consider a system of n material points P, with masses I+,, 
whose positions relative to a fixed coordinate system are given by the 
Cartesian coordinates 

X”, YY, zv (Y = I, . , n) 

Suppose that the given forces F,(&, Y,,, ZJ act on the points P,, 
and that there exist certain geometric constraints 

fa @, Y, 2, t> = 0 @=l,...,p1) (1.1) 

and also kinematic (in general, nonlinear) relations 

CpP f& Y, 2, s’, ?i’, 2’7 t> = 0 (B=I,...,pzi (1.2) 

where x,,‘> yV’> zy’. denote the projection vectors of the velocity of the 
point P,. ‘Ike connections (1.1) and (1.2) are assumed to he independent 
of the given forces, and of each other. 

Differentiating (1.1) with respect to time twice, and Equations (1.2) 
once, we obtain 

2 (usvZ”n + Ly,” + WuN) + es = 0 (s = 1, f . . , Ps P = p1+ Pd (1.3) 
Y 

where a,,, bSy, cgyr e, are known functions of the coordinates xv, yV, zy 
and the velocities LQ’~ yycs z,,’ of the point p, (Y = 1, . . . . n), and 
of the time t. 

%e possible displacements 6r,,(Bx,, 8yV, 6~~1 of the points P,, are 
determined by p independent relations 

2 (as” 6x, + b,, 6y, + cgy 6~) = 0 (s=i,. . . ,p) (1.4) 

Thus, among the 3n changes of the coordinates of the points of the 
system there will be k = 3n - p independent and p dependent ones. Equa- 
tion (1.4) makes it possible to express the dependent variations in 
terms of the independent ones. 
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Suppose that by relations (1.1) 
by means of I = 3n - p independent 
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the state of the system is determined 
Lagrangean coordinates ql, . . . , q1 

2, = 2, (41, . . . , qE, t), yv = YY (41, . * - 7 Ql, 0, 
(Y == 1, . . . , II) 

whose variations are, in view of the constraints 
equations 

(1.21, connected by pz 

(r - m + 1, . . . , PI 

Expressing, by means of the last equations, the p2 variations 

Q1_:p2+ I? **-I 6ql in the form of linear homogeneous functions of the 

k remaining independent variations 6q1, ..*, Sqk and substituting the 

found expressions into the relations 

we can express the latter in the form 

62, = i 97jiQlfi, 69, = i B,i&&, (V ::Z 1, . , , It) (1.7) 

i=l i-1 $.zL 

Here &is &is C, i are functions of the coordinates qlt . . . , 41, of 
their derivatives ql’j .*., qI’; and of time t; the variations Sql, . . . . 

6qk are arbitrary. 

‘l%e constraints imposed on the system depend on the physical nature 
of the system. Hence the characteristic features of the constraints cau 
be reduced to certain axioms which express the experimentally determined 
relations. In case of ideal constraints, such an axiom is given by the 
equation 

z] (R,,bs., + .R,&, -f R,,6zy) = 0 

i.e. the sum of the elementary work of the constraint reactions R,@,., 

R ,R 1 is equal to zero for every possible displacement of the system, 
wK&evz: the position, the velocities, and the given forces E’, may be at 
the given moment, If, however, the sum of the elementary work of the con- 
straint reactions for all possible displacements of the system is not 
always equal to zero, then the given system is a system with friction 
111. 

PainlevB-has studied holonomic system with friction, but many of his 
results can easily be extended to the case of nonholonomic systems with 
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friction. We shall derive some of these extensions with their con- 
sequences. 

It is easily seen that if the sum of the elementary work of a system 
of forces Fvz, F , Fyz for every possible displacement of a system is 
to be zero, then’!t is sufficient and necessary that the following equa- 
tions hold: 

(Y=i,...,?z) (1.8) 
r-1 c -1 s-1 

where A; are coefficients that are the same for all points of the system. 
Let us prove this assertion. 

Sufficiency. If Equations (1.8) hold, then 

1 (F .,.\ 6.) ‘, -:- F ,,?, dl/” -(- P,, 62”) = 0 

in view of Equation (1.4). 

Necessity. Suppose the last relation holds. Then for every possible 
displacement it is true that 

with still undetermined A,. By determining them in such a way that the 
coefficients of p dependent variations Sx, 6y, 8z vanish in this equa- 
tion, we obtain a sum which contains only k independent variations. “&US 

we obtain the 3n equations (1.8). 

We next consider the constraint reactions 5, (v = 1, . . . . n) whose 
sum of elementary work for all possible displacements is r f 0. 

Obviously, there exists an infinite number of systems of forces 
I%‘(&:, J$;, 4:) which h ave the property that for all possible dis- 
placements 

In order that this may be true it is necessary and sufficient, on the 
basis of our proof, that 

Among these systems of forces 4’ there exists one, and only one, 

Pif(f+ P,,Y py,) such that the vectors p&t determine some possible dis- 
placement of the system 8r,(v = 1, . . . , n). 

Let us note first that if for every possible displacement 
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-j)“81’, = 8t-jJlP’* = 0 
Y Y 

then all p,, = (V = 1, . . . , rd. Furthermore, suppose that for every 
possible displacement 

x (p v&v + pv&/, + pvzdrv) = 2 (K&G + R,,6y, + R&v) 
Y Y 

Substituting into this equation 6x,, 8y,,, 62, from (1.7) we obtain, 
because of the independence of the 6qi (i =- 1, . . . , k), the following k 
equations: 

2 (p vrAvi + p vu B,I + p vzcvi) = 2 (R,xA?,i + RqP,i + R,J,i) (i = 1, . . . , k) 

Y Y 

which we combine with the p equations 

X( pvxasv + P&?” + P”A”~ = u (s = 1, . . . , p) 

” 

We thus obtain 3n linear nonhomogeneous equations for the 3n unknowns 

P ’ Puy, PYZ’ The determinant of this system of equations is not equal 
t:‘zero, because in the opposite case the system of the corresponding 
homogeneous equations would have a nontrivial solution; in other words, 
there would exist a system of forces pV f 0 for which 

which, as was pointed out above, is impossible. Hence, there exists one 
and only one system of quantities pV(v = 1, . . . . n) which has the 
specified properties. On the basis of what has been said it is clear 
that the force of reaction s, acting at the point P,, can be decomposed 
uniquely into two forces 

1) for every possible 

w 

\ and p,, having the follo&ing properties: 

displacement 6r, 

Ix N&, = 0 (1.9) 

2) the vectors pat are among the possible displacements, and 

lbe force &, is called the constraint force, the force p,, is the 
friction force; their projections on the coordinate axes have the 
following forms: 

(1 .lO) 
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with the same coefficients A, and pi for all points of the system. We 
call attention to the fact that the constraint force is, in general, not 
equal to the normal reaction L. 1 1 , 

If at a given time instant t we know the positions and velocities of 
the points of the system, and also the given forces Fv(xv, yv, ty), then 
the constraint forces 4 are determined and will be the same whether 
there be friction in the system or not. 

Indeed, the equations of motion of the points can be written in the 
form 

(1.11) 

Substituting the accelerations x”, y”, z” given by these equations 
into the constraint equations (1.3), we obtain a system of p equations 
which do not contain the forces of friction, and which determine the co- 
efficients A; (s = 1, . . . , p) as functions of time, of the coordinates 
and the velocities of the points, and also of the given forces XV, Y,,, 
Z Y’ 

Therefore, for a frictionless system, a knowledge of the given forces 
F,, with given initial conditions is completely sufficient for the deter- 
mination of the motion of the system and of the forces of constraint re- 
actions \. 

For the determination of the motion of a system with friction, it is 
necessary to know, in addition to the given forces, also the friction 
forces or, at least, the sum of the elementary work of the reactions for 
possible displacements. 

Ihe friction forces are determined experimentally. Therefore, in the 
study of the motion of a system with friction one must know, in addition 
to the given forces, in general also the expressions for the coefficients 
/A i in terms of the X , qio, qj” ,’ t O. The form of these k functions is 
determined empirically [ 1 1 . 

For the initial conditions 44, qjo: t O which correspond to static 
friction and satisfy certain relations of the form 
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hX (qj7 Qj’? ‘1 = O (x=1,...,m) (1.12) 

the functions mentioned are not sufficiently determined. For such initial 
conditions, the coefficients cci are continuous functions of X,,, Y,,, q 
which may have various forms, depending upon whether or not the func- 
tions q, Y,, Z, satisfy certain inequalities [i 1 that depend on the 
particular values qj”, qj”:- to under consideration 

One says [i 1 that the law of friction is known if the experimental 
data determine the coefficients pi in the functions XI for arbitrary 
initial conditions, and in the functions X,,, Y,, Z, for special initial 
conditions satisfying the relations (1.12). 

If one has the given expressions for the pi (i = 1, . . . , k), one can 
replace the XS (s = 1, . . ., p) in them by values obtained by the above- 
indicated method, and represent the coefficients of pi in the form of 
some functions of time, of the coordinates and velocities of the points 
of the system, and also of the given forces. It follows that the fric- 
tion forces will also become known. They will be determined by Formulas 
(1.10) as functions of the indicated quantities. 

Thus, if the law of friction is known, we have 3n equations (1.11) 
for the description of the motion of the system. To these equations we 
must attach the p constraint equations (l.ll), (1.12) and k auxiliary 
relations obtained from the law of friction. 

2. Let us suppose that the law of friction for a given system is 
known. According to D’Alembert’s principle there exists at every instant 
of time t an equilibrium between the given forces F,, the constraint re- 
actions S, = Iy, + py, and the inertia forces SW,, 

F,+Nv+p,--vu-,=0 (Y = 1,. . , II) (2.1) 

Here w,(xc, yr, zcq is the acceleration vector of the point P, in the 
actual motion of the system. 

If the system undergoes an arbitrary displacement, then the sum of 
the elementary work of all forces will be equal to zero. From this and 
the condition (1.9) we obtain the equation 

-jJ {(XY + pKx - %GV) 6X” + (YY + pvll - q/v”) &I” + 
” 

+ (Z” + pa - %ZYU) 6.G) = 0 
(2.2) 

which states that in the motion of a system with friction the sum of the 
elementary work of the given forces, the frictional forces, and the 
forces of inertia for every possible displacement, is equal to zero at 
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any instant of time. Conversely, if for some motion of a constrained 
system Equation (2.2) is satisfied, then one can deduce Equation (2.1) 
by adding the equations (2.2) and (1.91, and by making use of the axiom 
of a free body. 

One can, therefore, consider Equation (2.2) as the general equation 
of dynamics for systems with friction, i.e. as the equation which yields 
the necessary and sufficient condition for a motion of the system that 
is compatible with the constraints and the given forces acting under a 
known law of friction within the given system. 

&paring Equation (2.2) with the Euler-Lagrange principle for a 
system without friction 

(2.3) 

i {(Xv - wc~“) 6X” + (YY - my,“) dy,, + (Z,, - &&u) 62”) = 0 
“Xl 

we see that a system with friction can be treated as a frictionless 
system if one adds to the given forces Fi(yY, Y,, Z,,) new active forces 
which are geometrically equal to the friction forces p,,(pVX, py,, pVz). 

Starting with Equation (2.2)) it is not difficult to obtain by the 
usual method [ 2 1 another basic principle of mechanics, the principle of 
least constraint of Gauss for a system with friction. This principle can 
be formulated in the following manner. 

The motion of a system of material points with friction constraints 
and subjected to arbitrary forces takes place with the smallest possible 
constraint [curvature 1 I at any instant of time if one takes as the 
measure of constraint, applied during an infinitesimal time interval, 
the sum of the products of the mass of each point by the square of.its 
displacement from the position which it would occupy if it were free and 
acted upon by the given forces and by forces geometrically equal to the 
frictional forces. 

Let Yyo&% Y*y yy ) be the acceleration vector of the point Pv of a 
system that moves in t e sense of Gauss, i.e. it has a motion that 1: 
satisfies the conditions imposed on a constrained system, and the condi- 
tions of the constancy of the coordinates xv, yvr z, and the velocities 

xy*> Y/i ry ‘. of the system’s points for the given instant of time t. 

It is easy to see that the vectors w,,, yb are among the possible dis- 
placements at, of the system I5 1, i.e. they satisfy 

-jJ I&J (5”” - rvx) + b,, (yv” - ?-vu) + csv (z,” - yvz) = 0 (s = i, . . . , p) (2.4) 

’ According to Gauss’s principle, the actual accelerations of the 
points of a system with friction yield a minimum of the function 
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(2.5) 

and, conversely, the conditions that A be a minimum for accelerations 
satisfying (1.3) lead to the equations of motion of the system. Indeed, 
from Equation (2.5) we obtain 

--6A=x{(X” +p”, - Wrvll) dxyN + (Y” + p”v - MYYYU) 6Y”” + 
” 

+ (2” +pvz - rn”Z”~) 62”“) = 0 

Here 

6xvV= x”U - T”X, 6Y”” = Y”” - Tvy, &z”” = zyn-~yz 

Multiplying Equation (2.4) by the undetermined factors A,, adding the 
results for s from 1 to p, and combining the sum with the last equation, 
we obtain the equations of motion of the system 

m”x”“= X” + 2 Las” + p “x, m”y” II = Y” +x U,” + P”~ 
S 

m”s” V “=Z” + ~h&S” + PYL 
S 

(v = 1, . . . ,n) 

These equations should be augmented by the p constraint equations (1.1) 
and (1.2), and the k auxiliary relations given earlier. 

‘Ihe equations of motion of a system with friction can also be given 
in the form of Appell’s equations. 

Differentiating (1.5) twice with respect to time t, and replacing the 

Ql :p*+19 ***9 41 “on the right-hand sides by their expressions in terms 
- :, of 91 t - * - # qk” obtained from Equations (1.2), we obtain 

k k 

~9” = 2 A,i qi” + s a -3 yv” = 2 Bvi Q< + a 
i=i i=l 

k 

Here, and in the sequel, the dots indicate independent 
not involve ql”, . . . , qc’< 

. . 

terms that do 

Making use of the last formulas, we can express (2.5) in the form 

k k 

A = S (ql”, . . ., qk”) - 2 Qiq[- x @qr+ as- 
i=l i=l 
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where S denotes the energy of acceleration 

given in the 

S = L- 2 m, (xy’12 + Y”“~ + .z,“~) 
2 

Y 

indicated way as a function of ql”, . . . , qk’t-and 

Q* = x (X,& + Y&i + Z&i) 

(i = l,...,k) 

denote generalized given forces and frictional forces. 

From the condition that the function A attain its minimum for the 
accelerations ql”, . . . , qk”y we obtain Appell’s equation 

(i = 1, . . . ,k) 

for a system with friction. 

3. Expression (2.5) for the deviation of A contains explicitly the 
frictional forces, i.e. the components of the constraint forces. However, 
what is more interesting is the establishment of Gauss’s principle for a 
system with friction without the explicit appearance of the frictional 
forces in the constraint function. 

The possible displacements of a given system with friction are deter- 
mined by Equations (1.4). In many cases it is possible to select from 
the family of possible displacements certain ones for which.the 
frictional forces perform no work. 

Indeed, adhering to the hypothesis that we know the law of friction, 
let us assume that among the possible displacements there is one which 
satisfies the conditions 

p”rk +pYdYY +p,& = 0 (Y = 1, . . ..n) (3.1) 

For the existence of such not identically vanishing displacements it 
is necessary and sufficient that the rank of the matrix of the coeffi- 
cients of the p + n equations (1.4) and (3.1) be less than the number 3n 
of the variations 8x,,, Syy, 6z, (V = 1, . . . , n), or, what is the same 
thing, that k > n. 

It is obvious that for these displacements 

2 @dxv + R,,dy, + RAz,) = 0 (3.2) 
Y 

‘lhe set of the possible displacements, satisfying the conditions 
(3.1) will be called, for the sake of brevity, (c)-displacements [ 3 I , 
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For arbitrary (c)-displacements Equation (2.2) takes on the form 

?I CC - ;IIZuXv”) 6x, + (Yy - znVyV”) 15y, + (Z, - mv G") 62, = 0 PJ) 

‘Ihe constraint reactions do not enter into this equation, and it 
plays the role of a principle for a system with friction, analogous to 
the Euler-Lagmnge principle. 

Let us now proceed to the est&4isbmnt of a principle of Gauss's 
type by starting with Equation (3.3). hng be acceleration vectors yV 
of the point PV we select vectors y+c such &at the vectckrs WV - yi/' are 

among the fc)-displacements, i-e. satisfy the conditions 

pvxW i PY$$ + pVtBZVM =I: 0 {Y =I, __ ‘7 n) (34 
where 

&&“= Z”“_ r,“,, &I,“= yuw- r$, 6z”“= qn-- r,“, 

For such passible [virtual 1 (c)ao~ions Equation (3.3) taks on the 
form 

which scan easily be expressed in the form 

A&+ AWB - AD+= 0 

denotes the degree of deviation (the constraint) of the actual motion of 
the system with friction from the actual motiun of the system freed from 
all connections: in an analogous manner one can determine d ayc and A,C. 

From this equation we 5kaJn two inequalities 

-L&C &c, &.w < &yC (3*5) 

Thus, we have proved the following theorems. 

1. The deviation of the actual motion (w,) of the system with 
friction from a possible (c)-motion is less than the deviation of the 
latter from the motion of the system freed from all connections. 

2, ‘i%e deviation of the actual motion of the system with friction 
freed from al.1 constraints is less than the deviation of the fatter fram 
the possible I virtual 1 (c)-motion, 



It follows from this that at every instant of time the actual accele- 
rations of the points of a system with friction cause the first varia- 
tion of the constraint 

to vanish if 6x,,“‘;- Sy,“j- I~z,‘~.(Y = 1, . . . , n) satisfy the conditions 
(2.4) and (3’.4L 

In other words, Gauss’s principle for a system with friction can be 
formulated in the same way as for a frictionless system if one takes 
into consideration only possible (c)-motions. 

The equations of motion of a system with friction can be derived from 
Gauss’s principle in the new form in the usual manner [ 2 1‘ 
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